Risk Factors for Congenital Heart Defects: A case study
Admission Note

- BG XXX is the 3584 gram product of a 37 WBD singleton gestation to a 22 year old G2P1A1 Caucasian female via C-section 2° to late fetal decels and FTP.
Infant characteristics

• Sex ratio
 - Males > females
 - International HLHS OR=1.7 (95% CI:1.55-1.85)

• Weight
 - BWI SGA OR= 4.4 (95% CI: 2.9-6.8)
 - NBDPS SGA OR= 2.0-3.0

• Maternal ethnicity
 - BWI, Atlanta - no differences
Maternal History

- PMHx: No diabetes, HTN
- PSHx: 2001 MVA liver lac and small intestinal injury s/p SBR
- Meds: PNV began @ 1st prenatal visit
- PObHx: G1 - SAB
Diabetes and HLHS

• Baltimore Washington Infant Study
 - Cases (4/377): Controls (23/3572)
 HLHS: OR = 1.7 (95% CI: 0.6-4.8)

• National Birth Defects Prevention Study
 - Cases (3/192): Controls (21/4086)
 • HLHS: OR = 1.8 (95% CI: 0.4-7.8)
Diabetes and Other CHDs

- Hypertrophic cardiomyopathy
- Double outlet right ventricle
- Truncus arteriosus
- Transposition of the great arteries
- VSD
Mechanism

- Hyperglycemia - Oxidative Stress
- Hyperinsulinemia
- Hypoglycemia - Lactic Acidosis
- Modifiers of diabetic embryopathy
 - Antioxidants
 - Lipids
 - Arachidonic Acid
- Genetic Variants
Maternal Medications
FDA Pregnancy Categories

• A - Controlled studies in pregnancy (<1%)
• B - Animal studies show no risk or human data are reassuring
• C - Human data lacking; animal studies positive or not done (66%)
• D - Human data show risk; benefit may outweigh
• X - Animal or human data positive; no benefit
Maternal Hypertension

- Angiotensin-converting-enzyme (ACE) inhibitors
 - Tennessee Medicaid
 - 29,507 infants 1985-2000
 - OR = 3.7 (95% CI: 1.9 - 7.3)

- 1995 - 2002 use of ACE inhibitors increased from 2.4% to 4.4%
ACE inhibitors pose risk of birth defects

Mothers who used ACE inhibitors, a blood pressure treatment, were more than twice as likely to have babies with birth defects.

Percentage of birth defects

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE inhibitor</td>
<td>7.12%</td>
</tr>
<tr>
<td>Other blood pressure drug</td>
<td>1.73%</td>
</tr>
<tr>
<td>No blood pressure drugs</td>
<td>2.63%</td>
</tr>
</tbody>
</table>

ACE inhibitor defects

- 50% Cardiovascular
- 33% Other
- 17% Central nervous system

SOURCE: New England Journal of Medicine
Multivitamins and Heart Defects

Conotruncal Heart Defects
- Hungary '96 (RCT)
- Atlanta 2000 (CC)

Outflow Tract Defects
- Hungary '96 (RCT)
- California '95 (CC)
- Baltimore-Washington '97 (CC)
- U.S.- Canada '99 (CC)
- Atlanta 2000 (CC)

Ventricular Septal Defects
- Hungary '96 (RCT)
- U.S.- Canada '99 (CC)
- Atlanta 2000 (CC)

All Heart Defects
- Atlanta 2000 (CC)

Odds Ratio and 95% CI

DNA Synthesis

5,10-CH₂-THF
5-CH₃-THF
B₁₂

THF

DHF

MTHFR
MTRR
TCII

TCII

MTRR

DNA Methylation

Methionine

SAM

SAH

Homocysteine

CBS

Cystathionine

Cysteine

GSH

SAM

Antioxidant Defense

Folic Acid Pathway

Folic Acid Pathway

Antioxidant Defense
N=654

N=317

N=337

GSSG:GSH >0.43

Yes

Meth >21.6µM

No Yes

N=122

N=195

N=212

N=125

Hcy>9.5µM

No Yes

N=61

N=61

N=114

N=81

N=118

N=94

OR=16.4

OR=6.1

OR=1

OR=4.0

OR=7.1

OR=40.1

OR=198.2

OR=40.1
Gaps identified by Botto AJMG 2003

• Do multivitamins reduce the risk?
• How much do they reduce the risk?
• What is the magnitude of effect?
• What components of multivitamins account for effect?
• What components of multivitamins account for effect?
• What dose is most effective?
• What is the mechanism?
• Do gene-environment interactions play a role?
Admission Note

• SocHx: Denies smoking, drug use
• Occassional alcohol use during 1st trimester
• Family Hx: noncontributory
Maternal smoking

- BWI – nonsignificant OR

- NBDPS – nonsignificant OR
Alcohol Use

- 77.6% ever use alcohol
- 58.8% drink while pregnant

- Conotruncal heart defects
 - California Birth Defect Monitoring Program
 - ≤ 1X week OR = 1.3 (95% CI: 1.0, 1.9)
 - ≥ 1 week OR = 1.9 (95% CI: 1.0, 3.4)
FAS Facial Characteristics

- epicanthal folds
- small eye openings
- flat midface
- upturned nose
- smooth philtrum
- thin upper lip

©1999 Teresa Kelleman, Community Resource Center
Family History

- **BWI**
 - OR = 4.8
 - 95% CI: 2.1 - 10.8
Maternal prenatal labs

• HIV/RPR/Hep B – negative
• Rubella – immune
Congenital Rubella Syndrome
Rubella Immune

- Rubella vaccination introduced in US 1969
- 91% of US women seropositive for rubella
- 75% of Sri Lankan women positive for rubella IgG
Admission Note

• PE: General Appearance - term newborn, mild respiratory distress, minimal central cyanosis initially, no obvious congenital malformations
Down Syndrome

- Chromosome 21
- 50%
- Why??
Causes of Common Pediatric Conditions

Genetic Factors

- Cystic Fibrosis
- PKU

Environmental Factors

- Birth Defects
- Asthma
- Prematurity
- Trauma
- Child Abuse

Multifactorial
Combined effect of homocysteine, smoking and MTHFR 677C>T genotype on CHD risk
HapMap Project

- International endeavor
 - Canada, China, Japan, Nigeria, United Kingdom and United States
 - Total of 270 individuals to be analyzed for 1 million SNPs
- Purpose
 - Provide a map of SNPs that will allow scientists to find and test susceptibility loci
 - Provide representative, genomewide haplotypes from different populations
 - Initial phase completed ahead of schedule
 - Publicly available data for 4 different populations
Birth Defects Research and Prevention

Research

Evaluation

Prevention

Take Action
Why is Preconception Care a public health concern?
Preconception Care

• Risk assessment

• Health Promotion

• Intervention
Our Vision of Preconceptional Care

- Determine genetic susceptibilities: genome-wide association studies
- Establish genetic and metabolic high-risk profile
- Provide diagnostic tools for physicians
- Design targeted treatments
- The benefits will be widespread and many cannot even be predicted yet
Acknowledgements

Faculty

S. Jill James, Ph.D
Stepan Melnyk, Ph.D.
Sadia Ghaffar, M.D., M.P.H.
Mario Cleves, Ph.D.

Staff

Linda Jackson, RHIT, ARHMS
Bettye Flowers, R.N.
Veronica Smith, MBA
Bridget Mosley, MPH

Bridget Mosley, MPH

• Research efforts supported by:
 - Cooperative Agreement No. U50/CCU613236-06 from the Centers for Disease Control and Prevention (CDC) and
• Most importantly, infants and their parents who have willingly participated in both the NBDPS and NICHD-funded study.