

national • birth • defects • prevention • study

Maternal Use of Acid Reducers Before and During Pregnancy:

Trends and Risks for Birth Defects Among Offspring

Kelly Getz, MPH MA Department of Public Health Center for Birth Defects Research & Prevention

Background

- What are acid reducers?
 - Medications that suppress gastric acid secretion
 - Indications: GERD, erosive esophagitis, ulcers and H. pylori infection (w/ antibiotics)
 - (1) Histamine-2 Receptor Antagonists (H2As)
 - Action block earliest stimuli for acid secretion, histamine
 - Less effective than proton pump inhibitors -- H2As faster acting, but shorter duration

Background

- What are Acid Reducers? (cont'd)
 - (2) Proton Pump Inhibitors
 - Action –block the final step in acid secretion pathway in the stomach; shut down the proton pumps leading greater suppression of acid.
 - Delayed onset, but longer acting

Background

Many women may be exposed in early pregnancy

- PPIs and H2As are available OTC as well as via prescription
- Symptoms of gastroephogeal reflux disorders (GERD) are common during pregnancy and may worsen severity of NVP

Data on the safety of acid reducers is limited

- Most studies have shown no significant increase in overall risk of birth defects
- A recent cohort found a modest increase in overall risk following preconceptional exposure to PPIs (Pasternak 2011)
 - Risk of heart defects and urinary tract defects, but were dismissed as chance findings
 - Few studies have evaluated defect-specific effects

- To describe trends in acid reducer use among NBDPS participants
- To evaluate whether maternal use of PPIs during the periconceptional period is associated with an increased risk of specific birth defects
- To evaluate whether maternal use of H2As during the periconceptional period is associated with an increased risk of specific birth defects

Methods: Exposure and Outcomes

Exposure

- Primary Comparisons
 - Any PPI use B1-P3 (versus no use B3-P9)
 - Any H2A use B1-P3 (versus no use B3-P9)
- Timing
- Specific medications

Outcomes – NBDPS Defects

- ≥ 200 cases
- $e \ge 4$ cases exposed during the periconceptional period, B1-P3

Methods: Covariates

Maternal demographic factors

- Age
- Race/ethnicity
- Education
- Center

Behavior and lifestyle factors

- Maternal smoking
- Maternal alcohol use
- MV/FA supplementation

Reproductive/medical factors

- Gravidity
- Pre-pregnancy BMI
- History of diabetes
- History of hypertension
- Periconceptional Infection

- Logistic regression used to estimate crude and adjusted odds ratios with 95% CIs
 - Models adjusted for covariates judged to be <u>both</u>:
 - (1) associated with occurrence of birth defects in at least one organ system
 - (2) associated with exposure among controls

- Factors associated with periconceptional PPI use
 - White race, age ≥ 25, BMI ≥ 30, higher education, smoking, study center
- Factors associated with periconceptional H2A use
 - White race, age ≥ 25, BMI ≥ 25, higher education, FA/MV use, hypertension, study center
- Cases and Controls differed on:
 - Race, age, BMI, education, study center, alcohol use, FA/MV, hypertension, diabetes

Trends in Maternal Acid Reducer Use

Trends in Acid Reducer Use

Maternal H2A Use Before and During Pregnancy 2.50% 2.00% Exposed Controls (%) 1.50% Preconception 1st Trimester 1.00% 2nd/3rd Trimester 0.50% 0.00% 2003-2004 1997-1998 1999-2000 2001-2002 2005-2007 Year of Conception

Trends in Acid Reducer Use

Maternal PPI Use Before and During Pregnancy

Results: Trends in H2A Use

Results: Trends in PPI Use

Results: Periconceptional Use of Specific H2As

Results: Periconceptional Use of Specific PPIs

Maternal H2A Use and Risk for Specific Birth Defects

H2A Crude and Adjusted* ORs (95% Cls) – Non-heart Defects

*Adjusted for race, age, BMI, education, hypertension, smoking, any FAMV use B1-P3 and study center

H2A Crude and Adjusted* ORs (95% Cls) – Heart Defects

*Adjusted for race, age, BMI, education, hypertension, smoking, any FAMV use B1-P3 and study center

Maternal PPI Use and Risk for Specific Birth Defects

Crude and Adjusted* ORs (95% Cls) – Non-heart Defects

*Adjusted for maternal race, age, BMI, education, history of hypertension, smoking, FAMV, study center Index: Any PPI Exposure B1-P3, Reference: No Acid Reducer Exposure B3-P9

	Any Preconception		1st trimester, no preconception		Preconception & 1st trimester	
Defect	Cases, Controls	cOR	Cases, Controls	cOR	Cases, Controls	cOR
Anencephaly	3, 27	2. 3 (0.7, 7.9)	2, 17	2.4 (0.6, 10.4)	2, 23	1.7 (0.4, 7.2)
Esophageal Atresia	4, 27	2. 1 (0.7, 6.1)	5, 17	4.7 (1.7, 13.3)	4, 23	2.8 (0.9, 8.1)
Hypospadias	3, 4	1.9 (0.4, 8.7)	5, 8	1.6 (0.5, 4.9)	9, 6	3.0 (1.0, 8.9)

Reference: No Acid Reducer Exposure B3-P9

	Lansoprazole		Omeprazole		Esomeprazole	
Defect	Cases Exposed	cOR	Cases Exposed	cOR	Cases Exposed	cOR
Anencephaly			3/5	3.2 (0.7, 14.4)		
Esophageal Atresia	3/9	3.0 (0.9, 10.4)			5/9	6.4 (2.2, 18.6)
Hypospadias	6/16	3.0 (0.9, 9.9)	6/16	3.6 (0.9, 14.3)	3/16	2.1 (0.4, 11.9)

Reference: No Acid Reducer Exposure B3-P9

 Provide further reassurance that acid reducers are not likely major risk factors for birth defects

Some evidence for modest increases in risk for a few specific defects

Anencephaly, esophageal atresia, hypospadias

Acknowledgements

Marlene Anderka, Pl

Study Collaborators
Chris Borger
Sonia Hernandez-Diaz
Carol Louik
Allen Mitchell

Martha Werler

•DPH Colleagues

 Interviewers, abstractors, clinical geneticists

Participants

